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The effects of rotation on salt fingers 

By RAYMOND W. SCHM1TT.F 
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Graduato School of Oceanography, Vniversity of Rhode Island, Kingston 

(Received 21 July 1976 and in revised form 18 November 1977) 

The effects of rotation on a salt-fingering interface between two mixed layers are 
studied experimentally. It is found that rotation causes an interface to thicken more 
rapidly than it does in the corresponding non-rotating experiment. In  order to interpret 
this result, the collective instability model of Stern (1969, 1975) is extended to include 
the Coriolis effect and the neutral .stability condition is derived. Rotation stabilizes 
the fingers, the degree of stabilization being dependent on the wavenumber of the 
perturbation. By assuming equal fluxes in the rotating and non-rotating experiments, 
the interface thickness data are found to be consistent with the extended collective- 
instability model. 

1. Introduction 
Convection is possible in a stably stratified fluid when the distribution of either heat 

or salt is gravitationally unstable and the overall stability is maintained by a stable 
distribution of the other component. When the sa,linity gradient is destabilizing, 
characteristically long narrow cells, which are called salt fingers, are generated (Stern 
1960). Heat diffuses 100 times faster than dissolved salts in water, and the fingers are 
driven by the faster lateral diffusion of heat from one finger to the next. This allows 
the release of the potential energy stored in the salt gradient, resulting in a net down- 
ward density flux. Fingers can also be formed using solutes of only slightly different 
diffusivities, such as sugar and salt, in which case the diffusion coefficient of salt is 
only a factor of three greater than the diffusion coefficient of sugar (Stern & Turner 
1969; Shirtcliffe & Turner 1970; Lambert & Demenkow 1972). 

Fingers can have a rather large vertical extent, reaching throughout a region of 
uniform vertical gradients. However fingers can also be limited to thin, strongly 
stratified interfaces and can coexist with turbulent mixed regions above and below 
(Turner 1967; Turner & Chen 1974). Stern & Turner (1969) were able to initiate a series 
of layers and interfaces by imposing an excess flux of the slower diffusing substance 
S on a stable uniform gradient of the faster diffusing substance T. Such laboratory 
experiments have led many investigators to identify salt fingering as the driving 
mechanism for the maintemnce of the ' thermohaline staircase ' observed beneath the 
intrusion of warm salty Mediterranean water into the colder fresher Atlantic (Tait 
& Howe 1968). Williams (1975) has observed optical images of salt fingers on such 
stratified interfaces in the ocean, which adds to the evidence for this hypothesis. 
Lambert & Sturges (1977) have shown that fingering a t  interfaces transports enough 
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salt to be important in the large-scale salt budget of the main thermocline in the 
northeast Caribbean Sea. 

A layer--interface system in the laboratory is fairly long lasting, apparently in a 
quasi-steady state. The net density flux through the finger interface drives the 
convection in the larger layers; this in turn appears to limit the vertical extent of the 
fingers, which are swept away by, and contribute to, the convective elements in the 
mixed layer. The only theory which treats a mechanism by which salt fingers may 
contribute to a larger-scale motion is the collective-instability model of Stern (1969, 
1975). 

Stern (1975) examined the stability of a field of fingers perturbed by a large-scale 
internal wave (wavelength > finger width) that produces convergence of the net 
density flux. Density anomalies so produced can cause the wave perturbation to grow 
if the net density flux exceeds the mean density gradient scaled in terms of the kine- 
matic viscosity: 

(PF, - aFd/v(aR -/@A > 1, (1.1) 

where pFs and aFT are the magnitudes of the density fluxes due to S and T ,  res- 
pectively, and a E  are their separate contributions to the density gradient and v 
is the kinematic viscosity. Stern (1969) derived the form appropriate for h e a h a l t  
fingers: PFs)IvaE > 2. He neglected the salinity gradient and assumed a constant 
flux ratio (suggested by the results of Turner 1967). Linden (1973) was able to show 
approximate agreement with this relation for laboratory measurements on a heat- 
solute system, but found the ratio to be a function of PASlaAT, where ,&IS' and aAT 
are the density differences due to the changes in S and T across the interface (Stern 
1976). Lambert & Demenkow (1972) found that the non-dimensional group (1.1) was 
a constant, but that the critical value was much smaller than 1 for sugar- salt fingers. 
Whether this remains true as /?AS/aAT -+ 1 is uncertain, but we expect the phynics 
of the phenomenon to remain valid even if the numerical value of the non-dimensional 
group (1.1) is some function of PASlaAT and KT,/Ks. 

To explore further the properties of fingering interfaces we have performed some 
simple experiments with sugar--salt fingers on a rotating table. The results of these 
experiments are related to the collective-instability model by extending the analysis 
of Stern (1975) to include the Coriolis effect. The rotational constraint removes a 
degeneracy in that the two horizontal-component equations are no longer decoupled 
and a dependency on the wavenumber of the instability is found. 

We present the observations in 9 2 and the analysis in 9 3. In  5 4 we attempt to 
interpret the experiments in terms of the model. We feel that the observations are 
interesting in their own right but also provide support for the collective-instability 
mechanism, which has been incorporated in several theoretical studies of salt fingers 
(Lambert & Demenkow 1972; Stern 1976). 

2. The experiments 
Salt fingers on an interface were generated in a Plexiglas tank (26.9 x 10.3 x 24.7 cm 

deep) by introducing a 12 cm layer of sugar solution over a 12 cm layer of slightly 
denser salt solution. The thickness of the finger interface slowly increased with time 
8:s the solutes were transported across the interface, decreasing the concentration 
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- 
Experiment aAT, PASO w (s hr, 'h0 n 

B1 0.100 0.090 0 
B2 0.100 0.090 0.707 1.14 f 0.06 17 
A 3  0.100 0.090 0.966 1.30 + 0.05 13 
B 3  0.100 0.090 1.382 1.35 f 0.07 17  
C1 0*100 0.095 0 
C2 0.100 0.095 1.381 1.39 f 0.08 19 

TABLE 1. Initial density conditions and anguler velocities of rotation for the experiments. h,,'ho 
is the average value of the ratio of the interfacial thicknesses in the rotating experiments to that 
in the non-rotating experiment with the same initial aAT and /?AS. n is the number of photograph 
pairs (hr, ho) used in forming the average. 

- 

- 

- 

difference between the upper and lower reservoirs. The interface thickness was made 
visible by a horizontal shadowgraph technique (Shirtcliffe & Turner 1970). The 
shadowgraphs were photographed by a motor-driven camera mounted on the rotating 
table, and the growth of the interface was measured from the photographs (see figure 
1,  plate 1). 

The solutions were prepared from distilled degassed water, with the initial densities 
measured with a hydrometer accurate to ? 0.0005g/cm3. The initial density of the 
salt solution was p = 1.100g/cm3 for all experiments. The initial density of the sugar 
solution was varied, as was the rotation rate; the conditions of the several experiments 
are listed in table 1. 

I n  the rotating experiments, the salt water was spun up before the sugar solution 
was introduced from a tank on the table, to  avoid mixing of the two solutions during 
spin-up. The table was carefully levelled so that its axis was within a minute of the 
vertical, to avoid 'tidal ' effects. The rotational period was measured by an electronic 
counter connected to  a micro-switch on the table. 

Photographs were taken a t  regular intervals (15 or 30 min) after the initiation of 
the pouring of the sugar solution. Samples of the photographs are shown in figure 1. 
The major difference between the rotating and non-rotating experiments is in the 
thickness of the interface. For the same initial conditions the rotating finger interface 
is thicker than the stationary one a t  the same elapsed time. The change in interface 
thickness h is shown quantitatively in figures 2 and 3, where h has been plotted as a 
function of time for both sets of experiments. Rotating interfaces are consistently 
found to be thicker than non-rotating interfaces, an increasing rotation rate giving a 
larger change in h (figure 2) .  There is also somewhat less vertical alignment of the 
fingers in the rotating case, fingers sometimes appearing to twist about one another, 
especially near the edges of the finger interface. 

It is possible to interpret the increase in h in terms of the collective instability 
relation. By approximating the gradients aFz and @a as - aAT;h and PhSlh, where 
aAT and PAS are the density increments across the interface due to T and S, we may 
write the instability condition (1.1) in finite-difference form: 

One interpretation is that, if this relation remains close to  an equality, the interface 
may be considered self-limiting; that  is, an increase in h would cause the fingers to 
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FIGZ..RE 2. h, the thickness of the fingering interface, as measured from photographs taken a t  
regular intervals in two-layer sugar- salt experiments with initial conditions aAT, = 0.10, 
PAS,  = 0.09 and various angular velocities. The uncertainty in h is & 0.5mm. , w = 0 ;  0 ,  
W = 0.707s- '; /,. (d 0.966s '; A, w 1.38s- l. 

become unstable, the resulting turbulence then thinning the interface back to marginal 
stability. We may thus interpret the thicker finger interface under rotation as being 
due to a stabilizing effect of the rotation. We shall later show that the quantity on the 
right of (2.1) increases when rotation is added to  the collective-instability model, thus 
allowing larger values of h a t  marginal stability. 

Solute concentrations, which would be required for a complete comparison of the 
rotating and non rotating regimes, were not measured during the experiments, but 
for one pair of experiments the index of refraction of the upper layer was checked a t  
the ends of the runs and found to be the same in the rotating and non-rotating cases. 
We might expect that  the fluxes of sugar and salt should be nearly the same in both 
cases because the flux depends primarily on (PAS)*; assuming equal fluxes allows us 
to make a t  least a first-order comparison between theory and experiment. Under this 
assumption a good measure of the stabilizing effect of rotation is the ratio h,/h, of the 
height of the rotating interface to the height of the non-rotating interface. 

A mean value of h,/ho was estimated for each rotating experiment by averaging 
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FIGURE 3. h as a function of time with initial conditions aAT, = 0.10, P A S  = 0.095. 
The uncertainty in h is f 0.5mm. 0, w = 0; A, w = 1.38s-l. 
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FIGURE 4. The h,/h, data vs. the Coriolis parameter. The solid curve represents F* with 
m = 20.4 cm-l. The dashed curves were calculated a t  m = E the standard deviation. 
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the values of hJh0 calculated from the h(t) data (figures 2 and 3) at equivalent elapsed 
times in the rotating and non-rotating runs. (In experiment A 3 ,  where the photo- 
graphs were not taken a t  the same intervals as in the non-rotating experiment, a linear 
fit to the h,(t) data provided the reference values of h, at the appropriate times.) 
h,/hu is included in table 1, along with the standard deviation about the mean, and 
plotted us. the Coriolis parameter in figure 4. Also included are curves derived from 
the analysis in the next section. 

- 

3. Collective instability of rotating salt fingers 
In order to refine further and to test the idea that the interface thickness is limited 

by the collective-instability mechanism [equation ( l . l ) ]  we have extended the model 
of Stern (1969, 1975) to include rotation. Rotation will not affect the purely vertical 
velocities within the fingers themselves. For small deviations from the vertical, it is 
appropriate to use the same model of the finger motion as is used in the non-rotating 
problem; the effects of rotation appear only in the dynamics of the destabilizing 
perturbation. 

We shall follow the notation of Stern (1 975, hereafter referred to as 11) and work in 
Cartesian co-ordinates (x, y, z )  and not in the tilted system of the wave perturbation 
as in Stern (1969, hereafter referred to as I). The undisturbed field of fingers is in 
hydrostatic and diffusive equilibrium, the motion is entirely vertical, and the fields 
of temperature, salinity and velocity are given by 

where 

T-To = qZ+T'sinlxsinly, 

s - 8, = Rz Z + S' sin Ix sin Zy, 

W = W' sin lx sin ly, 

is the horizontal wavelength of the fingers, 2 and sz are the horizontally averaged 
vertical gradients of T and S ,  and the equation of state is assumed linear, i.e. 

P = P o ~ ~ - ~ ~ ~ - ~ , ~ + P ~ ~ - ~ , ~ 1 ~  (3.3) 

in which CY and p are the density expansion coefficients for changes in T and S res- 
pectively, and po is the density a t  (q, So). The relations (3.1)-(3.3) satisfy the finite 
amplitude Boussinesq equations in a fluid unbounded in the vertical and are derived 
in Lambert & Demenkow (1972) and Huppert & Manins (1973). The time-dependent 
form is considered in 11. 

Consider the field of fingers to be perturbed by a large-scale wave with wavelength 
2n/m such that 2n/m > 2n/l. The molecular diffusion of T and S may be neglected 
on this scale, and we parameterize the transport of heat and salt by their averaged 
finger fluxes: 

Using the expansion coefficients in (3.3), it is possibIe to define a net density flux 
PFs-aFT and examine its effects on the density perturbation pm due to the wave. 

FT = WT = $WIT', Fs = wX= $WS ' .  (3.4) 



The eflects of rotation on salt Jingers 455 

The equation for the conservation of density is written as (equation 11.3.2 of 11) 

LDp = ($+v,.V) (pk+p(z)) = -V.(PF,-aF,). 
Po Dt 

(3.5) 

In  the undisturbed equilibrium model the fluxes would be non-divergent, but we 
expect that the disturbing wave will produce flux convergence so we must examine 
the behaviour of the fluxes when acted upon by the infinitesimal perturbation velocity 
V,. The flux magnitudes will be regarded as constant in time; only the change in 
their directions will be considered. The density flux is given by 

PFs-aF, = -(P&-a&)P(t), 

where [ ( t )  is a unit vector aligned with the velocity in the salt-finger cells and PFs - aF, 
is the magnitude of the density flux. c(t) is initially vertical (c(0) = (0 ,  0, l ) )  and is then 
tilted from the vertical by the shear of the wave. The horizontal components of c ( t )  
grow a t  a rate proportional to the shear of the wave but the vertical component 
decreases at a rate that is quadratic in the wave shear. Keeping only the lowest-order 
terms, we may write the time derivative of c(t) as 

where (u, f ,  om j, w , ~  &) = V,. The divergence of a c p t  is then 

by continuity of the perturbation velocity field (V . V, = 0). The above relation may 
be used in the time derivative of (3.5) to obtain 

When linearized, this becomes 

(equation 11.3.5 of 11). 

in a rotating co-ordinate system: 
The equations of motion for the perturbation are the linearized Boussinesq equations 

( a p t  - V V 2 )  v,, +fk x v, = - V$, - g&p~/po, (3.9) 

where f = 2w is the Coriolis parameter and viscosity is retained as the dissipative 
mechanism for the wave. $, represents the pressure perturbation due to the wave: 

The momentum equations for V, should contain Reynolds-stress terms due to the 
vertical motion in the smaller-scale fingers but we shall neglect these as they are 
small compared with the buoyancy and viscous stresses. This was justified in I by 
an estimate of the salt-finger Reynolds number, which was of order 1. 
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The component equations are 

(a/at  - vv2) u, -fu, = - a$m/ax, 

( a p t  - vv2)  V, +fu, = - a$,/ay, 
( a p t  - vv2)  w, = - a$,/az - gp;/po. 

These may be combined with the continuity relation to yield 

(3.10) 

where 'Tz = a2/8x2 + a2/ay2. When (3.8) is used to eliminate p& we obtain 

This is a complete linear equation for w,. 
lye can now examine the plane-wave solutions to (3.11) appropriate for an un- 

bounded fluid. There is no loss of generality if we orient the wave (phase) vector 
completely in the x, z plane. The solutions take the form 

w, w exp {Qt + im(x sin 6' + z cos S)>, (3.12) 

where s1 is the complex growth rate, 2n/m is the wavelength and 6' is the angle between 
the wave vector and the vertical. By substituting (3.12) into (3.11) we find that the 
growth rate must satisfy the quartic relation 

(R + vm2) [(Q + vm2) ~2 + g ( a q  + pSs) sin2 6' 52 

+ g(pFs - a&) sin2 6' cos2 Om2] +f2 cos2 0 Q2 = 0. (3.13) 

We wish to  determine the conditions for neutral stability, when the real part of 
R is zero. Substituting a pure imaginary growth rate (frequency) s1 = is/' into (3.13) 
yields two equations in a': 

52'4 - [g(aTz - pSz) sin2 B +f2  cos2 6' + h 4 3  CP 

+ vm4g(p4 - aF,) sin2 B cos2 6' = 0, (3.14 a) 

- 2~m252'3 + [vrn2g(& - BSz) sin2 6' 

+m2q(PFs-a~,)sin26'cos28] Q' = 0. (3.14b) 

The non-trivial root of (3.14b) is 

R'2 = 4 sin2 6' (g(ol5"'- Pa,) + (g/v) (pFs- d,) cos2 6'1. (3.15) 

Insertion of this expression in ( 3 . 1 4 ~ )  yields a relationship which must be satisfied 
a t  the point of neutral stability: 

1 sin2 6' [g(az - PIz) + ( g / v )  (PF, - aF,) cos2 6'12 - + [ g ( a q  - pSz) sin2 6' +fZcos2 6' + v2m41 

x [g(aE - pSz) + ( g / V )  (pFS - aF,) C O S ~  6'1 + v2m4(g/v) (pFS - 09,) C O S ~  0 = 0. (3.16) 
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This expression can also be obtained by requiring that, for the roots f2 = ? if2‘ [given 
by (3.15)], the expression 

Q2 + 4 sin2 O[g(aE - ,8Rz) + (g/v) (pFs - aF,) cos2 81 

be a factor of (3.13). That is, performing the polynomial division and setting the 
remainder equal to zero yields (3.16). 

Besides the appearance of the Coriolis parameter, there is a major difference 
between the relation (3.16) and that of Stern (I, 11); the criterion for the instability 
of rotating salt fingers is dependent on the wavenumber of the perturbation, whereas 
the non-rotating criterion is independent of the wavenumber. We also find that there 
is a different dependence on 8. 

To investigate (3.16) we cast it  in a non-dimensional form, using the following 
substitutions: 

f2 - _  - f 2  R =  (PFs - aFT) 
v(aR - #8SE)’ g(aFz - pSz) N2’ 

F =  

We can then express (3.16) as a quadratic in F :  

(X2-X3) F2+ 2X(M4- RX) F + X ( l -  2R) - 2M4- 1 = 0. (3.17) 

F is the ratio of the density flux to the density gradient (scaled with the viscosity) 
which appeared in the non-rotating stability problem, R is the square of the ratio of 
the inertial frequency to the Brunt-Vaisala frequency N ;  M is the dimensionless 
wavenumber magnitude, and X contains the dependence on the angle of inclination 
of the wavenumber vector to the vertical. I n  I and I1 it  was found that F = X-l, 
giving a minimum critical flux of F = 1 when 8-t 0. This means that the wave vector 
is vertical and there is a steady horizontal drift as f2 -+ 0 ( Q2 = N 2  sin2 8, 8+ 0).  We 
expect some constraints on such motion in the rotating frame, however, and we must 
investigate the two roots of (3.17). These are given by 

F = {RX-M4+[(M4+1)2+X2(R-1)2+2X(R-M4-RM4-l)]3}/(X-X2). (3.18) 

Examining (3.18) when R = 0 (no rotation), we find that the ‘negative’ root yields a 
negative quantity, F = [ - 2M4 - (1 - X)]/(X - X2). This is physically impossible for 
the salt-finger case, since energetics require that pFs - aFT > 0 and 

aE-/3Ss = -p;’ap/aZ > o 
for gravitational stability. The ‘positive’ root, however, does reduce to F = X-l as 
in I and 11; thus all further work is done with this root. We also require that F be real, 
or that the quantity 

B E  (M4+1)2+X2(R-1)2+2X(R-M*-RM4-1) 

be non-negative. Since 1 > X > 0, R > 0 and M4 2 0 this is always satisfied; the 
minimum value of B is zero, when R = M4 = X = 1. 

We can now compute F = (RX-M4+B3)/(X-X2) for different values of the 
parameters. In  figure 5, F is plotted us. X for various R and M. F has a minimum 
with respect to X a t  some value of X < 1 for all R > 0. We also note that for large 
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FIUURE 5 .  (a) F ws. X for R = 1 and various M .  The non-rotating case ( R  = 0) F = X-’ is also 
shown. The value of X a t  the minimum of F approaches 1 as M increases. ( b )  F ws. X for M = 0 
and various R. 

values of the wavenumber (M4 > R )  the effects of rotation become negligible; the 
curves approach the curve F = X-1 appropriate for non-rotating fingers, and the least 
stable flux occurs at values of X closer to 1 (smaller angles from the vertical). 

Since the analysis assumed only infinitesimal perturbation amplitudes, we expect 
that the first ‘waves ’ to grow (and potentially dominate the fully developed turbulent 
regime) will be those with the lowest value of the critical flux. F can be minimized 
with respect to X by solving 

= 0, (3.19) 

where B’ = dB/dX = 2X(R- 1 ) 2 +  2 (R-M4-  RM4- 1) .  The root of (3.19) (de- 
signated by X,,,) was found numerically, using an iterative technique, for various 
R and M .  The minimum critical flux was then plotted vs. the wavenumber M for 
several rotation rates R (figure 6) .  As in figure 5,  it  is apparent that for large enough 
wavenumbers (M4 > R )  rotation has only a slight stabilizing effect. The value of 
X,,, approaches 1 in this limit, and setting X = 1 in (3.17) allows us to write 

dF ( X  - X 2 )  ( R  + iB-jB’) - (1  - 2X)  (RX - M4 + Bh) _ -  ax - ( X  - X2)2 

(3.20) 

F* is an approximate form of the neutral curve valid for dimensional wavenumbers 
greater than an ‘Ekman’ wavenumber ( f / v ) j .  The relation of F* to F is shown in 
figure 7. This approximation is helpful to the understanding of the problem. Small- 
scale waves will be only slightly affected by rotation because of large viscous stresses. 
Larger size (small m )  perturbations are less affected by viscosity because of their lower 
shears and so feel the stabilizing effects of rotation. A laminar ‘Ekman depth’ 
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FIGURE 6. F as a function of M for various R and 
X = Xmln, the root of dF/dX = 0. 
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FIGURE 7. The relation of P* to F .  The vertical lines indicate where 
M = Ri and the dimensional wavenumber m is equal to  ( v / f )  b .  
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2n (v l f )h  is the appropriate length scale that distinguishes between a large or small 
stabilization due to Coriolis accelerations, 

Since the lowest critical flux is found for M4 > R, we might expect small-scale 
instabilities to dominate the breakdown process. There is a limit on the smallness of 
the disturbances imposed by the salt-finger width, however. That is, the theory is not 
expected to apply when m exceeds I ,  the finger wavenumber. This limit is expressed as 

or in terms of the dimensionless wavenumber, 

The second factor on the right is generally of order unity so we expect the upper limit 
on the dimensionless wavenumber to be the 4 power of the Prandtl number for heat- 
salt fingers and the 4 power of the Schmidt number for sugar-salt fingers. We do not 
expect the theory to hold for dimensionless wavenumbers greater than M,. 

4. Discussion 
The analysis in the preceding section may be related to the experimental results 

in the following manner. Vsing a finite-difference approximation 

(pFS - FT)r hr/v(aAT -PAS), 
to the collective-instability condition for the rotating system and using (2.1) for the 
non-rotating system, we may write 

Since we have assumed the fluxes to be unchanged by rotation for equal initial values 
of aAT and PAS, this reduces to  

hr,’h, N FfR,  MI .  (4.2) 

Direct measurements of the density difference across the interface were not made. 
We can, however, make rough estimates for R for the case PAS = 0.090, using data 
from Lambert & Demenkow (1972). A finite-difference estimate can be expressed as 
R z f2h,/g(aAT - PAS). The quantity aAT -PAS increases rather slowly compared 
with h,, so R varies nearly as much as h, during the course of an experiment. Using 
hJh0 to approximate F and the density data of Lambert & Demenkow (1972) to 
calculate R, we can find a value of M ,  the non-dimensional wavenumber of the 
instability, that  satisfies h,/h, = F ( R ,  M )  E(3.18) with the plus sign and with X = X,,,] 
for each estimate of hr,’h,. The value of M is also found to vary between the beginning 
and the end of each experiment. R varies from 0-08 to 1.3 and M from 0.9 to  1.8 with 
M always greater than R. The ranges of these estimates for R and M are included in 
table 2. 
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- 
Experiment f(s-') hr/ho R M fii(cm-') 

B2 1.414 1.14 0.08-0.34 1.0-1.5 19-6 k 1.8 
A 3  1.932 1.30 0.11-0.64 0.9- 1.5 18.8 k 0.8 
B3 2.763 1.35 0.29-1.30 1.2-1.8 21.7 k 0.9 

20.9 k 0.9 C2 2.763 1.39 - - 

TABLE 2. The estimated ranges of R and M for the experiments. No density data were available 
for C1 and C2; thus no estimate of R could be made. % is the average of the values of m calculated 
from (3.20) for each h,/h,. The viscosity was taken to be v = 1.53 x 10-2cm2s-1 for P A S  = 0.09 
and v = 1.58 x 10-2cm2s-' for PAS = 0.095. 

Since M4 > R we can apply the approximation hJh0 N F* = (v2m4 + f2) / (v2rn4 - f2) 
[see (3.20)], in which the stratification no longer appears, and calculate the dimensional 
wavenumber m for each experiment. In contrast to the variation of R and M ,  m 
remains relatively constant for each run and changes little between the different 
experiments. Average values of m and the standard deviations are included in table 2. 
The mean of the data from all experiments is ?Ti = 20.4 5 1.6 cm-l. Curves of (3.20) 
using %i and ?Ti 5 standard deviation are shown in relation to the h,./ho data in figure 4. 

The significance of this constant wavenumber is not clear, but some speculation 
is possible. Recall that, in the approximation of (3.20), 8 N 0, i.e. m is directed vertic- 
ally. We might interpret 2n/m as a vertical distance over which the collective- 
instability mechanism acts. If we assume the interior of a finger interface to be 
marginally stable and the edges, where the breakdown occurs, to be critical or slightly 
supercritical with respect to collective instability, then the vertical length scale of 
3-1 mm (which is less than an Ekman thickness and greater than the finger width, - 1 mm) may correspond to the thickness of the edge transition zones. The thickness 
of these transition zones, where the salt fingers give way to convective turbulence, 
certainly appears to be of this order in the photographs (see figure 8, plate 2). 

This interpretation is meant as only a speculation, the application of this linear 
theory to the highly supercritical conditions of these two-layer run-down experiments 
cannot be rigorously justified. Also the estimated wavelength of instability is un- 
comfortably close to the finger width, and diffusion effects neglected in the model 
might be important on this scale. We do feel, however, that the data are a t  least 
qualitatively consistent with the collective-instability model. 

At any rate it is not clear how one could otherwise explain the observed increase 
in interface thickness in these strongly rotating experiments. The Taylor number 
f 2 H 4 / v 2 ,  a measure of the relative effects of rotation and viscosity, is of order lo8 
and the Rossby number W / f H ,  the ratio of inertial to rotational effects, is less than one 
when typical convection velocities (a few mm/s) in the mixed layers are used. One 
might have expected the inhibition of finger convection under these conditions, 
because rotation delays the onset of convection in the rotating Rayleigh problem 
(Chandrasekhar 1961, chap. 111) and also inhibits the growth of finger modes in the 
linear stability analysis of Pearlstein (1976). But the present experiments were highly 
supercritical with respect to the formation of salt fingers and the fingers were removed 
from solid horizontal boundaries, which are probably essential to the inhibiting 
effects of rotation in the above-mentioned studies. Our view is that the interface 
thickness is internally controlled and independent of the mixed-layer depths; this is 
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also supported by the experiments of Demenkow (1973). The collective-instability 
model is the only available model which addresses the problem of the finger interface 
thickness. Including rotation in the model yields results consistent with those 
observed experimentally. 

5. Summary and conclusions 
We have demonstrated in laboratory experiments with two-layer sugar-salt fingers 

that the effect of rotation on a fingering interface is to cause it to thicken more rapidly 
than it does in an inertial frame of reference. Also, the degree of order in the horizontal 
structure appears to be reduced by rotation. These results are interpreted as being 
due to stabilization of the fingers by the rotation, and are consistent with an extension 
of the collective-instability model of Stern (1969, 1975) to  a rotating frame. The 
added constraint of rotation allows the calculation of the wavenumber of the in- 
stability when the interface thickness data are used in an expression [equation (3.2011 
derived from the theory. This wavenumber, which is found to remain relatively 
constant (within 10 Ofo) for three rotation rates and two different stratifications, is 
interpreted as corresponding to a vertical length scale over which the collective- 
instability mechanism acts. The length scale compares well with the thickness of the 
observed transition regions between the laminar salt fingers in the interior of the 
interface and the fully developed turbulence in the mixed layers above and below. 
The lower degree of order among the fingers may be a consequence of the spiral 
velocity structure of the inertial-gravity wave perturbations examined in the model. 
While these experiments do not prore the validity of the collective-instability theory, 
they are a t  least qualitatively consistent with the model and increase our confidence 
in its use in salt-finger flux models (Stern 1976). 

The authors wish to  thank Dr Melvin E. Stern for many helpful discussions during 
the course of this study. This work was supported by the Oceanography Section of the 
National Science Foundation, Grant no. OCE-75-14113-A02. 
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h = 3.3 cm 

1 

( b )  

FIGURE 1. Photographs of the fingering interface for experiments wikh aAT = 0.10, P A S  = 0.03 
at t = 6OOmin. (a)  Non-rotating, w = 0. (b )  Rotating, o = 1 . 3 8 ~ ' .  The rotating interface is 
thicker than the non-rotating interface and the fingers show less vertical alignment. 
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27r rn-' = 0.3 1 cm 

FIGURE 8. Photograph of the rotating interface with the length scale obtained from the theory 
(0.31cm) compared with the thickness of the edge transition regions. EAT = 0.10, B A S  = 0.09, 
w = 1.38s-l, t = 600min. 
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